Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 373(6551): 198-204, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244410

RESUMO

Mars' sedimentary rock record preserves information on geological (and potential astrobiological) processes that occurred on the planet billions of years ago. The Curiosity rover is exploring the lower reaches of Mount Sharp, in Gale crater on Mars. A traverse from Vera Rubin ridge to Glen Torridon has allowed Curiosity to examine a lateral transect of rock strata laid down in a martian lake ~3.5 billion years ago. We report spatial differences in the mineralogy of time-equivalent sedimentary rocks <400 meters apart. These differences indicate localized infiltration of silica-poor brines, generated during deposition of overlying magnesium sulfate-bearing strata. We propose that destabilization of silicate minerals driven by silica-poor brines (rarely observed on Earth) was widespread on ancient Mars, because sulfate deposits are globally distributed.

2.
J Geophys Res Planets ; 125(8): e2019JE006295, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999799

RESUMO

The Curiosity rover's exploration of rocks and soils in Gale crater has provided diverse geochemical and mineralogical data sets, underscoring the complex geological history of the region. We report the crystalline, clay mineral, and amorphous phase distributions of four Gale crater rocks from an 80-m stratigraphic interval. The mineralogy of the four samples is strongly influenced by aqueous alteration processes, including variations in water chemistries, redox, pH, and temperature. Localized hydrothermal events are evidenced by gray hematite and maturation of amorphous SiO2 to opal-CT. Low-temperature diagenetic events are associated with fluctuating lake levels, evaporative events, and groundwater infiltration. Among all mudstones analyzed in Gale crater, the diversity in diagenetic processes is primarily captured by the mineralogy and X-ray amorphous chemistry of the drilled rocks. Variations indicate a transition from magnetite to hematite and an increase in matrix-associated sulfates suggesting intensifying influence from oxic, diagenetic fluids upsection. Furthermore, diagenetic fluid pathways are shown to be strongly affected by unconformities and sedimentary transitions, as evidenced by the intensity of alteration inferred from the mineralogy of sediments sampled adjacent to stratigraphic contacts.

3.
J Geophys Res Planets ; 122(12): 2510-2543, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29497589

RESUMO

The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 µm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 µm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.

4.
Science ; 350(6257): aac7575, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26450214

RESUMO

The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).


Assuntos
Lagos , Marte , Clima , Exumação , Paleontologia
5.
Science ; 343(6169): 1242777, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324272

RESUMO

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Marte , Água , Baías , Carbono/análise , Sedimentos Geológicos/análise , Sedimentos Geológicos/classificação , Hidrogênio/análise , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/química , Nitrogênio/análise , Oxirredução , Oxigênio/análise , Fósforo/análise , Salinidade , Enxofre/análise , Enxofre/química
6.
Science ; 343(6169): 1247166, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324273

RESUMO

We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced (3)He, (21)Ne, and (36)Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.


Assuntos
Radiação Cósmica , Evolução Planetária , Exobiologia , Meio Ambiente Extraterreno/química , Marte , Gases Nobres/análise , Biomarcadores/análise , Biomarcadores/química , Sedimentos Geológicos , Isótopos/análise , Isótopos/química , Compostos Orgânicos/análise , Compostos Orgânicos/química , Doses de Radiação , Datação Radiométrica , Propriedades de Superfície
7.
Science ; 343(6169): 1243480, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324271

RESUMO

Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.


Assuntos
Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Marte , Minerais/química , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/química , Sedimentos Geológicos/análise , Minerais/análise , Silicatos/análise , Silicatos/química , Compostos de Silício/análise , Compostos de Silício/química
8.
Science ; 343(6169): 1244734, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324274

RESUMO

Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Marte , Baías , Sulfato de Cálcio/análise , Sulfato de Cálcio/química , Cloro/análise , Cloro/química , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/química , Halogênios/análise , Halogênios/química , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/química , Magnésio/análise , Magnésio/química , Silicatos/análise , Silicatos/química , Água/química
9.
Science ; 341(6153): 1238932, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072925

RESUMO

The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe(3+)- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.

10.
Science ; 341(6153): 1239505, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072928

RESUMO

The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

11.
J Contam Hydrol ; 47(2-4): 211-8, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11288577

RESUMO

Subsurface transport of groundwater contaminants is greatly influenced by chemical speciation, precipitation and sorption processes at the mineral-water interface. The retardation of contaminants is often greatest at boundaries between minerals and in fractures and pore spaces. The investigation of the spatial distribution of sorbed contaminants along these boundaries requires micro-analytical techniques. The sorption of dissolved Pu(V) on a natural zeolitic tuff from Yucca Mountain (NV, USA) was examined using microautoradiography (MAR), X-ray diffraction (XRD), electron microprobe (EM) techniques, and synchrotron-based micro-X-ray fluorescence (micro-SXRF). The tuff contained a heterogeneous distribution of zeolites and trace quantities of smectites, Fe oxides (hematite), and Mn oxides (rancieite), which are present as fracture fill and pore space materials. Micro-SXRF studies showed that Pu is mostly associated with bodies of smectite plus Mn oxides, which were typically elevated in Ce, Ga, Nb, Pb, Y, Ca, Ti, and Zn. Sorbed Pu was not associated with Fe-rich bodies, which were enriched in Cl and Rb. Results of the MAR studies were complementary to that of the micro-SXRF studies in that Pu was associated with similar elements in the tuff. Indirect detection of Pu by EM or micro-SXRF (by analyzing Ag developed on the MAR photoemulsion) was a more sensitive method for detecting lower levels of sorbed Pu than the direct detection of sorbed Pu via micro-SXRF in the absence of the photoemulsion.


Assuntos
Geologia , Plutônio/análise , Poluentes Radioativos da Água/análise , Adsorção , Microanálise por Sonda Eletrônica/métodos , Fenômenos Geológicos , Microquímica/métodos , Minerais/análise , Óxidos/análise , Espectrometria por Raios X/métodos , Síncrotrons , Difração de Raios X/métodos
13.
J Geophys Res ; 103(E13): 31477-89, 1998 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-11542260

RESUMO

Mars landers seeking evidence for past or present life will be guided by information from orbital mapping and from previous surface exploration. Several target options have been proposed, including sites that may harbor extant life and sites most likely to preserve evidence of past life These sites have specific mineralogic characteristics. Extant life might be gathered around the sinters and associated mineral deposits of rare active fumaroles, or held within brine pockets and inclusions in a few evaporite-mineral deposits. Possibilities for fossilization include deltaic and lake-bottom sediments of once-flooded craters, sinters formed by ancient hot-spring deposits, and the carbonate deposits associated with some evaporite systems. However, the highly varied mineralogy of fossil occurrences on Earth leads to the inference that Mars, an equally complex planet, could host a broad variety of potential fossilizing deposits. The abundance of volcanic systems on Mars and evidence for close associations between volcanism and water release suggest possibilities of organism entrapment and mineralization in volcaniclastic deposits, as found in some instances on Earth. Thus the targets being considered for exploration include a wide variety of unique deposits that would be characterized by silica or various nonsilicate minerals. Beyond these "special" deposits and in the most general case, an ability to distinguish mineralized from uncemented volcanic detritus may be the key to success in finding possible fossil-bearing authigenic mineralogies. A prototype miniaturized X ray diffraction/X ray fluorescence (XRD/XRF) instrument has been evaluated with silica, carbonate, and sulfate minerals and with a basalt, to examine the capabilities of this tool in mineralogic and petrologic exploration for exobiological goals. This instrument. CHEMIN (chemical and mineralogical analyzer), is based on an innovative low-power X ray tube, transmission geometry, and CCD collection and discrimination of diffracted and fluoresced X rays. The ability to accumulate and integrate the entire circumference of each complete Debye diffraction ring compensates for poor powder preparations, as might be produced by robotic sampling systems. With CHEMIN, a wide range of minerals can be uniquely identified. Using Rietveld analysis of the XRD results, mineral quantification is also possible. Expanded capabilities in phase analysis and constrained data solutions using quantitative XRD and XRF are within reach.


Assuntos
Exobiologia , Marte , Minerais/análise , Espectrometria por Raios X/instrumentação , Difração de Raios X/instrumentação , Desenho de Equipamento , Estudos de Avaliação como Assunto , Fósseis , Robótica , Voo Espacial/instrumentação , Astronave/instrumentação , Erupções Vulcânicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...